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Introduction

This report will investigate and mathematically characterise the behaviour of the viscoelastic system
shown in the provided experimental video1. The general approach will be:

1. Relate the given volume of the syringe to the video scale

2. Track and plot the viscoelastic response of the system

3. Use the plot to calculate the coefficient of viscosity

To aid in the task of making measurements / tracking motion in the video, the open-source, freely
available Tracker application was used2. This enabled sub-pixel measurements to be made and the
frame-by-frame tracking eliminates human timing error. The data from Tracker were exported for
processing in R and were subsequently integrated into the LaTeX report using Knitr.

1 Foundational Information

1.1 Viscoelastic Model & Idealisations

The video shows the Maxwell model of viscoelasticity. This is the simplest model of viscoelasticity and
consists of a spring and damper (also known as a dashpot) connected in series.

1The video is publicly available here: http://youtu.be/ZVK1qVkXfC4
2Tracker can be found here: https://physlets.org/tracker/
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It should be noted that this system isn’t quite the ideal Maxwell model. There is also a mass
component that is introducing subtle, second-order dynamics into the system. Because the mass
is dropped, its momentum initially overextends the spring and a brief period of oscillation ensues.
With that being said, after the oscillations subside, the system should act more-or-less like an ideal
Maxwellian system. The other assumptions being made throughout this report are:

• The dashpot (damper) is ideal and obeys the equation F = ηẋ

• The spring is ideal (no self-damping) and obeys the equation F = kx

• The η and k terms in the equations above are constant

• The fibre connecting components is massless and exhibits no elasticity

• The pulley is frictionless and massless

• The internal volume of the syringe is cylindrical

• The diameter of the syringe plunger is equal to the internal diameter of the syringe

• The volume of the syringe from the first to last marking is exactly 100 ml

• The mass-hook assembly is exactly 500 g

• The acceleration of gravity acting on the mass is 9.807 m s−2

• The volume, mass, and acceleration of gravity are constant throughout the video

• The mass can be treated as a pure, constant force where F = mg

• This gravitational force is the only force acting on the system

• The syringe body and pulley assembly are fixed in space and are unyielding

• The syringe-spring-pulley assembly is perfectly level with the horizon

• Aerodynamic effects (outside of the syringe needle) are negligible

1.2 Experimental Setup

A mechanical diagram of the experimental setup can be seen in Figure 1. This system can be fur-
ther simplified by replacing the pulley and weight with a constant force. This idealised take on the
experimental setup perfectly represents the Maxwell model and can be seen in Figure 2.

2 Scale Calibration

2.1 A Ratio Based Calculation of Scale

Deducing scale from a video is always a difficult task and this scenario is further complicated by the
lack of information provided. The volume of the syringe, however, is known and from this and the
aspect ratio of the syringe, it is possible to work out the diameter of the syringe plunger. Once the
diameter of the plunger is known, the scale of the video can be calculated.
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Figure 1: A mechanical diagram of the experimental setup — featuring a damper, spring, and pulley-
weight assembly for force application.

Figure 2: An idealised version of the experimental setup. This diagram is identical to that of the
Maxwell model.

The first problem to overcome is that of units. We know that we will want our final units to be
some measure of length. Currently, however, we only have volume. Helpfully, one millilitre is equal to
one cubic centimetre3. Consequentially:

V = 100 ml = 100 cm3

The next step is to find the ratio between the diameter and length of the syringe. This will allow us
to rewrite the dimensions of the syringe using a single unknown which can later be solved for. Because
this is a ratio, the units are irrelevant and we can measure in pixels without calibrating first. I’ll define
this ratio as Q.

Q =
Length

Diameter

The error bounds are given as a standard uncertainty. This way the minimum and maximum
interpretations are taken into account, but the consistency of the intermediate measurements can
tighten the error bounds a little. Figure 5 in the appendix shows this measurement and Table 5c
summarizes the numerical values.

3Fun fact, the litre is not an SI unit, however, it is among a list of units that are acceptable to use in conjunction with
the SI units (https://www.bipm.org/utils/common/pdf/si_brochure_8_en.pdf). The correct SI unit for volume is,
in fact, the cubic metre (m3). Neat.
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Also note that, because the original measurements contained four significant figures, all results have
been rounded to four figures (though intermediate values retain their full precision).

The length from the 0 ml line to the 100 ml line was measured to be 178.4 ± 1.624 pixels and the
inner diameter of the syringe — measured as the outer diameter of the plunger — was 60.62± 0.7577
pixels. The ratio of length to diameter was thus calculated to be 2.943± 0.0455.

In order to relate this ratio back to volume, it’s assumed that the inside of the syringe is a perfect
cylinder. The volume of the syringe is then:

V = πr2h

To put that equation in known terms, observe that the diameter (d) is double the value of r and
that h, in this case, is the length (which can be expressed in terms of d and the ratio Q). Putting this
all together:

V = π

(
d

2

)2

Qd

This can then be reduced to:

V =
π

4
Qd3

Finally, solving for d:

d = 3

√
4V

πQ

Plugging in values, I’m left with a diameter of 3.511 ± 0.0181cm. Converting to millimetres is a
piece of cake, resulting in a final diameter of 35.11 ± 0.181mm. Comparing to the diameter of other,
100 ml syringes listed online by Harvard Apparatus4 it’s possible to sanity check this result. The most
common diameter appears to be 34.9 mm which isn’t all too far from the calculated value.5 If we assume
that the true diameter of the plunger is 34.9 mm and use that as a reference, then we can calculate the
percent error using the following formula:

Percent Error =
Calculated− Reference

Reference
× 100

Plugging in values results in an overall percent error of 0.5927 %. Less than 1% error is quite
encouraging and makes it seem likely that the syringe shown in the video is of a standardized form-
factor.

2.2 Calculating a Conversion Factor

As a final result, we can divide the calculated, millimetre diameter by the measured, pixel diameter in
order to obtain the real size of a pixel.

Real size of a pixel =
Millimetres

Pixels

4http://www.harvardapparatus.com/media/harvard/pdf/Syringe%20Selection%20Guide.pdf
5Ready to do some unethical statistics? If the wording of this sentence were slightly changed from “most common

diameter” to “average diameter” — which, in everyday English, holds the same meaning — the discrete nature of syringe
sizes could be conveniently overlooked. The average diameter (as opposed to mode diameter) of the syringes on the
datasheet can be computed as 35.17 mm. While this value is somewhat meaningless (there are no real syringes that have
a diameter of 35.17 mm), it could be used as a reference value all the same and would produce the misleadingly low
percent error of −0.17 %. Don’t p-hack, kids.
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The tricky thing here is that that video changes scale between where initial measurements were
made (when the video was zoomed in on the syringe) and where the displacement is measured (near
the end of the video when the whole system is seen in motion). Because this conversion factor will be
used to convert measurements made in tracking the displacement, the diameter of the syringe must
be remeasured after the video zooms out to show the whole system. These secondary measurements
can be seen in Figure 6c and are summarized in Table 6b. The rescaled diameter comes out to be
30.91± 0.1098 pixels.

Plugging this value (along with the calculated, millimetre diameter) into the equation above gives
a conversion factor of 1.136 ± 0.007112 millimetres per pixel and will be used to convert all future
measurements from pixels to millimetres. This is functionally equivalent to calibrating Tracker /
VIEW, but allows us to propagate calibration uncertainty all the way through to the final result.

3 Analysing Viscoelastic Behaviour

3.1 Plotting the Creep Response

Once the scale of the system has been determined, the system creep must be plotted. To accomplish
this, the position of the dropped mass (in pixels) was tracked frame-by-frame. The path traced by the
mass can be seen in Figure 6a. Tracking the mass (as opposed to just the syringe plunger) makes it
possible to see the full system dynamics (mass-spring included), but also means that swaying needs to
be addressed.

While the weight hanging off of the end of the pulley was acting like a pendulum (swinging slightly
from side to side), the change in angle was so minuscule that the Pythagorian distance from the pulley
to the mass was nearly identical to the displacement in the y-direction. In more formal terms, if l is
the true displacement, then:

l =
√
x2 + y2 and x = y tan θ

Substitution for x results in:

l =
√

(y tan θ)2 + y2

But θ is so small, it can be considered 0:

lim
θ→0

tan θ = 0

Putting it all together:

l =
√

(y × 0)2 + y2 =
√
y2 = |y|

Therefore, in all following calculations, the absolute value of the y-coordinate of the mass will be
treated as the displacement of the mass and, consequentially, the extension of the viscoelastic system.

The data was normalised so that the first measurement was centred at (0,0) and then was plotted
in Figure 3. In this figure, it is possible to see a brief, oscillatory period right after the mass is dropped.
This confirms the presence of second-order dynamics and reaffirms that this system is not an ideal
Maxwellian system.6 After 2.5 seconds, however, the mass-spring component of the system settles and
the dynamics that follow can be considered adherent to the Maxwell model.

By discarding the first 2.5 seconds of data, it’s possible to plot the creep response of the dashpot
component. This is shown in Figure 4. A linear regression was also done on this data and the gradient
was found to be 2.873± 0.003879. The uncertainty for this value is the standard error of the regression
coefficient. It describes the variance of the gradient if the regression were to be repeated with a different

6But come on, nobody is perfect!
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sample. Critically, this value plays nice with our existing standard uncertainty values and can still be
propagated through to the final answer. This gradient can also be thought of as a velocity with the units
of pixels per second. We can use this velocity in the next section to calculate the viscosity coefficient η.
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Figure 3: The full response of the viscoelastic system
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Figure 4: The cropped, idealised response of the viscoelastic system (shown in red) and the line of best
fit (shown in blue).

3.2 Calculating the Viscosity Constant

Because, in the Maxwell model, the spring and damper are connected in series, several relations are
immediately apparent: the forces acting on the individual components of the system must be equivalent
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to the overall applied force7 and the total extension of the system must be equal to the sum of the
spring and damper extensions.

Fd = Fs = Fg and x = xd + xs

Newton’s second law gives the relation between force, mass, and acceleration as F = ma and the
acceleration of gravity at the surface of Earth is given as g; therefore:

Fg = mg

Finally, it’s helpful to note down the fundamental equations for a spring and a damper:

Fd = ηẋd and Fs = kxs

Currently, this presents three unknowns: xd, xs, and η (what is being solved for). The displacement
relation can be used to do away with xd and xs. In order to avoid integrating the damper equation,
the displacement relation can be differentiated and rewritten as:

d

dt
x =

d

dt
(xd + xs) or ẋ = ẋd + ẋs

The fundamental equations can then be rearranged and the spring term differentiated to solve for
the ẋ values:

ẋd =
Fd
η
, ẋs =

d

dt

(
Fs
k

)
Substituting into the displacement relation:

ẋ =
Fd
η

+
d

dt

(
Fs
k

)
As the spring term has no dependence on t, it’s derivative is zero. Consequentially:

ẋ =
Fd
η

Recall that Fd = Fg and that Fg = mg:

ẋ =
mg

η

Solving for η results in the following equation:

η =
mg

ẋ

Finally it is possible to solve for η. The mass (m) is given to be 500 g, the surface acceleration of
gravity (g) is 9.807 m s−2, and the velocity calculated earlier (ẋ) is 2.873± 0.003879 pixels per second.
The viscosity constant η is then calculated to be 1707 ± 2.304. But wait... What are those units?
Gram-metres per pixel-second? That’s pretty awful.8 Converting to SI units is possible through the
following series of operations:

1707 g ·m
px · s

× px

1.136 mm
× 1000 mm

m
× kg

1000 g

7This can be proven by Newton’s third law of motion which states every force has an equal and opposite reactionary
force. The force of gravity acts on the mass, so the spring provides an opposing force, which induces the same force again
in the damper, which finally transfers the force to the wall.

8A more professional report might say ”non-standard”, but I started this report with a pun, so...
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It’s then possible to cancel units and some common factors:

1707 �g ·��m
��px · s

× ��px

1.136���mm
×

���1000���mm

��m
× kg

���1000 �g
=

1707 kg

1.136 s

At long last, we can calculate our final answer:

η = 1502± 9.622kg s−1

As a final, statistical hurrah, a confidence interval can be calculated from the standard uncertainty
of our answer. The cumulative distribution function says that approximately 95% of data in a normal
distribution (like our uncertainty distribution — see Appendix C) falls within two standard deviations
from the mean. That makes it possible to say, with 95% confidence, that the true value of η lies between
1483 kg s−1 and 1522 kg s−1. With a range of only 38.49 kg s−1, that’s not half bad!9

9It’s worth noting that when working with an actual viscoelastic material, stress (σ) and strain (ε) would have been
used instead of force (F ) and displacement (x). Because stress is a force over area and the strain becomes dimensionless,
the unit calculations work out a bit differently. If stress and strain values were used to calculate η, the final units would
have been kg m−1 s−1 and the value slightly different as a result. That being said, it doesn’t make much sense to think
about areas of force application or fractional extensions in a discrete mechanical model like this, so using force and
displacement seems justified.
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Appendix

A Calibration Measurements

(a) Measuring Plunger Depth

(b) Measuring Plunger Diameter

Depth (px) Diameter (px)

175.5 61.10
177.5 61.75
178.2 59.50
178.7 60.25
179.0 60.00
179.0 61.00
180.8 60.75

(c) Numeric Values

Figure 5: Before calibration, the dimensions of the syringe must be measured in pixels so that a ratio
of width to diameter can be calculated. Here the internal diameter of the syringe is found by measuring
the width of the plunger. The length of the 100 ml volume is measured as the distance from the first
to last black line on the syringe.
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B Displacement Measurements

(a) Tracked Displacement Path

Rescaled Diameter (px)

30.76
30.92
30.83
30.83
31.08
31.00
30.92

(b) Numeric Values

(c) Remeasuring Plunger Diameter

Figure 6: The displacement of the system was tracked at the point where the hook connects the mass
to the string. Since the scale of the video changed from when the original calibration measurements
were taken, the diameter of the syringe plunger must be remeasured so that a correct scaling-factor
can be obtained.
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C Standard Uncertainty & Uncertainty Propagation

Whenever measurements are taken, there is bound to be some ambiguity. A combination of limited-
precision tools and human subjectivity results in an uncertainty regarding the true value of any par-
ticular quantity. As it happens, however, the more repeat measurements that are taken, the closer and
closer the average of those measurements gets to the true value.

In statistics, this phenomenon is called The Law of Large Numbers and the distribution of these
repeat measurements is called a Gaussian or Normal distribution. The width of this distribution can
then be used as a gauge for how much uncertainty is present in the measurements — this is described
by the Standard Deviation. The standard deviation is easy to track for repeat measurements like
those used in calibration or for the gradient of a regression, but how does it change when values are
multiplied? Or raised to a power?

To answer this, we turn to the Exact Formula for Propagation of Error :

σ2
x =

(
∂x

∂a

)
σ2
a +

(
∂x

∂b

)
σ2
b + · · ·+

(
∂x

∂n

)
σ2
n

The full derivation is beautiful and shows the connection between Calculus and Statistics but
isn’t the topic of this assignment; here, the focus will be on applying this equation.10 Throughout
this report, there have been three classes of calculations that involved uncertainty: exponentiation of
uncertain values, division of uncertain values, and scaling by a definite constant. The solution of the
propagation equation for each of these calculations is shown below.

C.1 Definite Scaling

x = ka,
σx
x

=
σa
a

C.2 Exponentiation

x = an,
σx
x

= n
(σa
a

)
C.3 Multiplication & Division

x =
a× b
c

,
σx
x

=

√(σa
a

)2
+
(σb
b

)2
+
(σc
c

)2

10The full derivation can be found here: https://chem.libretexts.org/Bookshelves/Analytical_Chemistry/

Supplemental_Modules_(Analytical_Chemistry)/Quantifying_Nature/Significant_Digits/Propagation_of_

Error
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D R Code

D.1 Scale Calibration

# Load the ratio measurements

ratio <- read.csv("../Measurements.csv")

# Round (when displaying) to 4 significant figures

options(digits = 4, knitr.digits.signif = TRUE)

# Get the average length

len <- mean(ratio$Length)

len

## [1] 178.4

# And the error

lenSD <- sd(ratio$Length)

lenSD

## [1] 1.624

# Get the average diameter

dia <- mean(ratio$Diameter)

dia

## [1] 60.62

# And the error

diaSD <- sd(ratio$Diameter)

diaSD

## [1] 0.7577

# Time to find a ratio

Q <- len / dia

Q

## [1] 2.943

# Now propagate the uncertainty (I'm calculating the standard uncertainty)

QSD <- sqrt((lenSD / len)^2 + (diaSD / dia)^2) * Q

QSD

## [1] 0.0455

# Holy mackerel, it's time for finding d!

V <- 100

d <- (4*V/(pi*Q))^(1/3)

d <- d * 10 # For millimeters

d

## [1] 35.11
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# And uncertainty, still standard uncertainty, different formula this time

dSD <- (1/3) * (QSD / Q) * d

dSD

## [1] 0.181

# Sanity checking, some values from online

exDias <- c(34.9, 34.9, 35.7) # Values found from Harvard Apparatus Datasheet

# Most common diameter

modeDia <- exDias[1]

modeDia

## [1] 34.9

# Average diameter

avgDia <- mean(exDias)

avgDia

## [1] 35.17

# Percent error in the diameter calculation (assuming mode is correct)

modeDiaError <- (d - modeDia) / modeDia * 100

modeDiaError

## [1] 0.5927

# Percent error assuming the average is correct (to make a point)

avgDiaError <- (d - avgDia) / avgDia * 100

avgDiaError

## [1] -0.17

# Get the average, rescaled diameter

rdia <- mean(ratio$RescalDia)

rdia

## [1] 30.91

# And the error

rdiaSD <- sd(ratio$RescalDia)

rdiaSD

## [1] 0.1098

# As a final, calibration result, what is the size of a pixel?

px <- d / rdia

px

## [1] 1.136

# Uncertainty again

pxSD <- sqrt((dSD / d)^2 + (rdiaSD / rdia)^2) * px

pxSD

## [1] 0.007112

13



D.2 Analysing Viscoelastic Behaviour

# Load the mass tracking data (667 data points!)

creepy <- read.csv("../DropMass.csv")

# Normalise the data

normdata <- data.frame(t = creepy$t - creepy$t[1], x = creepy$x - creepy$x[1],

y = creepy$y[1] - creepy$y)

# Trim out the first 2.5 seconds (where the oscillations are)

trimdata <- normdata[normdata$t > 2.5,]

# Time for a linear regression to get the gradient of the creep plot

lobf <- lm(y ~ t, data = trimdata)

# Extract the gradient (velocity)

vel <- coef(lobf)["t"]

vel

## t

## 2.873

# Get the standard error of velocity

velSD <- summary(lobf)$coefficients[2,2]

velSD

## [1] 0.003879

# Put the regression values in a plottable function

reg <- function(x) vel * x + coef(lobf)["(Intercept)"]

# Here are some known constants

m <- 500 # grams

g <- 9.80665

# Calculate the viscosity coefficient

eta <- m * g / vel

eta

## t

## 1707

# Don't forget about error!

etaSD <- (velSD / vel) * eta

etaSD

## t

## 2.304

# Fix the units on eta

ans <- eta / px

ans

## t

## 1502

# Final uncertainty propagation

ansSD <- sqrt((etaSD / eta)^2 + (pxSD / px)^2) * ans

ansSD

## t

## 9.622
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