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1 Introduction

Bacteria inhabit nearly every environment on Earth, capa-
ble of thriving 10,000 metres below the ocean’s surface or
more than 40,000 metres up into the atmosphere — in both
radioactive waste and within other organisms [1-4]. One
feature nearly all bacteria share is a cell wall made of pepti-
doglycan [5]. This net-like sacculus helps scaffold cell enve-
lope components, maintain cell shape, and withstand turgor
pressures up to 5 atm in diderms (Gram-negative bacteria)
and as high as 30 atm in monoderms (Gram-positive bacte-
ria). Without a cell wall, these pressurised bacteria would
quickly lyse [6, 7].

To expand, divide, and remodel the sacculus, bacteria
rely on peptidoglycan hydrolases to break particular bonds
within the cell wall. While this is essential for growth,
it’s also a careful balancing act, as excessive hydrolysis can
weaken the peptidoglycan and result in lysis [8].

This review will provide some background on peptidogly-
can structure, synthesis, and hydrolysis before discussing
the essential roles peptidoglycan hydrolases play in the cell
and how their potentially destructive activity is regulated.

2 Background

2.1 Peptidoglycan
2.1.1 Structure

Chemically, peptidoglycan is a polymer of alternating N-
Acetylglucosamine (GlcNAc) and N-Acetylmuramic acid
(MurNAc) monomers cross-linked by short MurNAc-bound
peptides [9]. Typically, each MurNAc starts off carrying a
pentapeptide with the sequence L-Ala-D-isoGlu-(mDAP /L~
Lys)-D-Ala-D-Ala (Fig. 1A). Meso-diaminopimeilic acid
(mDAP) is found more commonly in diderms, while most
monoderms contain L-Lys (Fig. 1B) [10].

Between their inner and outer membranes, diderms usu-
ally contain a single layer of peptidoglycan 2.5-6.5 nm thick,
while monoderms lack an outer membrane entirely and sur-
round themselves instead with a thicker (15-30 nm), multi-
layered peptidoglycan wall [6, 11].

2.1.2 Synthesis

Peptidoglycan synthesis starts in the cytoplasm, where
a GlcNAc monomer is converted into a MurNAc-
pentapeptide and coupled to a prenyl phospholipid an-
chored in the cytoplasmic membrane (Fig. 2A). A second
GIcNAc is then transferred onto the C4 hydroxyl of the

MurNAc to form Lipid II, the basic building-block of pep-
tidoglycan [12]. Depending on the organism, the peptide
stem may undergo additional processing before being ex-
ported by a Lipid II flippase such as MurJ [10, 13, 14].

Outside the cytoplasmic membrane, Lipid II units are
polymerised into glycan chains by glycosyltransferases and
cross-linked by transpeptidases, which usually form cova-
lent bonds from the D-Ala in position four of the donor
peptide to the side-chain amine of either mDAP or L-Lys
in the acceptor peptide (Fig. 2B) [15-17].
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Figure 1: Pentapeptide Structure Varies By Species
(A) Lipid II is the basic building-block of peptidoglycan. Vari-
able groups within the stem peptide (shown in teal) have been
labelled R*-R3. R! may be either OH or NH, (forming D-isoGlu
or D-isoGIn), R? may be either H or COOH (forming L-Lys
or mDAP), and R? is where cross-linking occurs (potentially
through a poly-Gly or poly-L-Ala linker). Figure adapted from
Do, Page, and Walker [10]. (B) In the pentapeptide’s third
position is a diamino acid that acts as a cross-link acceptor.
Typically, monoderms carry L-Lys while diderms carry mDAP,
a carboxy derivative of lysine. The additional carboxyl group of
mDAP has been highlighted in light blue.

2.2 Peptidoglycan Hydrolases
2.2.1 Classification

For nearly every linkage in peptidoglycan, there exists a
hydrolase capable of cleaving it (Fig. 3). Those that cleave
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(B) Transpeptidase Mediated Cross-Link Formation

Figure 2: Peptidoglycan Synthesis Requires Enzymatic Activity in the Cytoplasm and the Periplasm

(A) In the cytoplasm, Lipid II is synthesised and anchored to the plasma membrane. Fully processed Lipid II units are then
exported to the periplasm by a flippase and polymerised by a glycosyltransferase, releasing the lipid anchor to be recycled.
Following polymerisation, peptide stems are cross-linked by a transpeptidase, connecting adjacent glycan strands. Many bacteria
contain class A penicillin binding proteins (aPBPs) exhibiting both glycosyltransferase and transpeptidase activity, while others
rely on separate proteins for polymerising glycan (the SEDS family) and forming cross-links (bPBPs) [18-20]. (B) To cross-link
stem peptides, DD-transpeptidases attack the D-Ala-D-Ala bond of a donor peptide and form a covalent intermediate, releasing the
terminal D-Ala in the process. The nucleophilic amine of the incoming acceptor peptide then attacks this intermediate to form a
peptide bond between the two stems. Rarer cross-links between two diamino acids in the third position may also be formed by
LD-transpeptidases (not shown) and don’t rely on the presence of a D-Ala-D-Ala motif [21]. Figures adapted from Do, Page, and
Walker [10].

Peptidases can then be divided into amidases, hy-
drolysing the bond between MurNAc and 1-Ala, endopep-
tidases, which cleave peptide cross-links or other bonds
within the peptide, and carboxypeptidases, which cleave

the glycan chain are referred to as glycosidases, and en-
zymes cleaving within the stem peptides are referred to as
peptidases [8].

Glycosidases can be further broken into glucosaminidases
(cleaving after GlcNAc), and muramidases (cleaving after
MurNAc). Though they aren’t strictly hydrolases, lytic
transglycosylases cleave the same linkages as muramidases
and are generally lumped in with the glycosidases [8].

residues from the C-terminal ends of peptide stems. Fi-
nally, the endo- and carboxypeptidases can be further clas-
sified as DD, LD, or DL peptidases depending on the specific
linkages they target [8].
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Figure 3: Hydrolases Exist for Nearly Every Linkage in Peptidoglycan

Peptidoglycan hydrolases can be divided into glycosidases (shown in blue, cleaving the glycan chain) and peptidases (shown in
yellow, cleaving the stem peptides). The carets indicate the site of hydrolysis for each enzyme. Lytic transglycosylases cut the
same bonds as muramidases but aren’t true hydrolases — they break bonds without HoO. When lytic transglycosylases cleave
the glycan strand, an intermolecular mechanism results in the formation of anhydro-MurNAc, preventing further extension of the
glycan strand. Figure adapted from Vollmer et al. [8] and Do, Page, and Walker [10].

2.2.2 Redundancy & Multifunctionality

It’s often quite difficult to assign biological function to par-
ticular hydrolases, as many bacteria possess a high number
of them with redundant roles, and individual hydrolases can
have several distinct functions [8]. E. coli, for example, has
five amidases, six lytic transglycosylases and three endopep-
tidases that all contribute to the separation of daughter cells
following cell division [22, 23].

3 Why Hydrolases Are Essential

3.1 Cell Growth

For bacteria to grow, the peptidoglycan sacculus must ex-
pand; this requires the rupture of covalent bonds to release
tension and make room for new glycan strands to be in-
serted (Fig. 4) [24, 25]. The exact mechanism likely differs
between monoderms and diderms but ultimately results in
the release of peptide cross-links (often via endopeptidases).
In B. subtilis, the LytE and CwlO DL-endopeptidases are
essential for growth and double mutants are not viable [26].

3.2 Rigidity Regulation

The careful shortening of glycan chains and reduction of
peptide cross-linking can introduce some elasticity into pep-
tidoglycan while maintaining enough rigidity to prevent
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Figure 4: Sacculus Expansion Requires Hydrolysis

(A) To expand the sacculus, hydrolases cleave the cross-links
holding old glycan strands together and allow newly synthesised
peptidoglycan to be inserted. Once inserted, the nascent strands
can be cross-linked to the rest of the cell wall. (B) In rod-shaped
bacteria, glycan strands are inserted perpendicular to the cell
axis, facilitating lateral growth while maintaining a relatively
constant diameter. Newly synthesised peptidoglycan is shown
in darker colours. Figures adapted from Singh et al. [27].
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(B) Hydrolase Mutants Exhibiting a Chaining Phenotype

Figure 5: Hydrolases Are Required for Septum Cleavage and the Separation of Cells

(A) The cell envelope is structured differently in monoderms and diderms, resulting in subtly different methods of division. In
monoderms, a septum fully forms mid-cell before being hydrolytically cleaved; but in diderms, septum formation and division
occur concomitantly — the “septum” exists only for a moment before the cells separate. (B) In the absence of hydrolytic activity,
cells can fail to fully separate and may form long chains. Deletion of the essential LytB hydrolase in Streptococcus gordonii results
in a prominent chaining phenotype. Microscopy image from Arrigucci and Pozzi [31].

osmotic lysis [10, 28]. Lytic transglycosylases like MItG
in E. coli both cleave stiff glycan stands and leave an
anhydro-MurNAc terminus that prevents further extension
(Fig. 3) [29]. Carboxypeptidases can then reduce cross-
linking by reducing the number of donor stem peptides.
By trimming pentapeptides into tetrapeptides, the D-Ala-D-
Ala bond needed to form the DD-transpeptidase donor com-
plex is removed (Fig. 2B) [8].

3.8  Cell Division

In monoderms, cell division requires an intracellular septum
to first fully form then be cleaved, but in diderms the saccu-
lus is pinched off gradually during cell separation (Fig. 5A).
Regardless of mechanism, hydrolysis is eventually required
to separate the daughter cell walls [8]. E. coli, for example,
recruit a number of hydrolases to the septum; particularly
vital are the AmiA/B/C amidases, without which chains of
up to 20 cells form. Further hydrolase deletions can extend

these chains to 100 cells or more (Fig. 5B) [23, 30].

3.4 Sporulation & Germination

Sporulating species rely on hydrolases during spore for-
mation, maturation, mother cell lysis, and germination
(Fig. 6A) [32, 33]. To form an endospore in B. subtilis, the
cell partially divides to form an asymmetric septum, then
reshapes it with the SpolID and SpollP hydrolases, allow-
ing the mother cell to engulf the endospore [34]. As a second
layer of cortical peptidoglycan encases the spore, peptide
stem removal by the CwlD amidase allows for a unique &-
lactam ring to form within the MurNAc (Fig. 6B) [8, 35].
To release the endospore, the mother cell is lysed by LytC
and the sporulation-specific CwlC amidase [32]. Finally,
during germination, the cortical peptidoglycan is selectively
digested by the SleB and CwlJ hydrolases, freeing the spore
to rehydrate and grow [36, 37].
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Figure 6: Hydrolases Are Involved in Spore Formation, Maturation, Mother Cell Lysis, and Germination

(A) Under normal conditions, sporulating bacteria grow like any other bacteria (left), but when exposed to potentially lethal
stressors, they can form resistant endospores that lie dormant until conditions improve (right). The hydrolases employed by
B. subtilis to progress through each stage of the sporulation cycle have been indicated in brackets. The cortical peptidoglycan

unique to bacterial endospores is shown in brown.

(B) During cortex maturation, every other MurNAc within the cortical

peptidoglycan has its peptide stem removed and replaced with a §-lactam ring (shown in teal). This modification vastly reduces
cross-linking to give cortical peptidoglycan its resilience and allow for its selective degradation during germination.

3.5  Trans-Envelope Assemblies

Peptidoglycan naturally contains pores that allow proteins
up to 100kDa through, but they are too small to permit
the assembly of large trans-envelope complexes [6, 38]. To
get around this, pili, flagella, and secretion systems are of-
ten coexpressed with a glycosidase that can locally enlarge
peptidoglycan pores [39, 40]. FlgJ is a multifunctional flag-
ellar protein containing an N-terminal domain involved in
rod assembly and a C-terminal domain with pore-enlarging
glucosaminidase activity [41].

4 How Hydrolases Are Regulated

4.1  Genetic Control

4.1.1 Two-Component Systems

The LytE and CwlO DL-endopeptidases essential for growth
in B. subtilis are homeostatically regulated by the WalRK
two-component system (Fig. 7) [42]. A drop in the extra-
cellular concentration of DL-endopeptidase cleavage prod-
ucts activates the WalK histidine kinase which goes on to
phosphorylate the intracellular WalR response regulator,
enabling it to promote the expression of lytE and cwlO,
increasing DL-endopeptidase activity [43].

A buildup of cleavage products, on the other hand, leads
to the deactivation of WalK and WalR, halting the tran-
scription of lytE and cwlO and unrepressing the iseA re-
pressor. CwlO has a naturally short half-life (around seven
minutes) and quickly degrades, and IseA directly inhibits
LytE, overall reducing DL-endopeptidase activity [43].

4.1.2 Coupled Expression

The coupling of FltJ glucosaminidase expression to flagel-
lum assembly is part of a larger trend — VirB1l is a hy-
drolase expressed as part of Agrobacterium tumefaciens’s
DNA-transferring secretion system, and PilT makes room
for pilus synthesis in E. coli [39].

Analogously, as chained cells can’t efficiently chemotax,
the B. subtilis cell-separation hydrolases LytC and LytD are
expressed as part of the o “flagella, motility, and chemo-
taxis regulon”; o® is responsible for 70-90% of lytABC tran-
scription and 95% of lytD transcription [8, 44, 45].

4.2 Hydrolase Localisation

4.2.1 Septum Targeting

In E. coli, the AmiB/C amidases are targeted to the sep-
tum, focusing amidase activity at the site of cell separa-
tion [46]. In preparation for division, FtsZ polymerises mid-
cell to form the Z-ring, and its conserved C-terminal peptide
recruits further proteins to form the divisome (Fig. 8). One
of these proteins is FtsEX, a transmembrane protein that
goes on to bind and localise AmiB/C in the periplasm [47].

4.2.2 Coordinating Synthesis & Hydrolysis

Diderms with thin sacculi can ensure a balance of pep-
tidoglycan formation and degradation via multi-enzyme
synthase-hydrolase complexes (Fig. 9A) [50]. E. coli syn-
thesis machinery can directly complex with the hydrolases
PBP4/7 and Nlpl can serve as an adaptor protein connect-
ing further endopeptidases like MepS and MepM to the
complex [51].



A) Low pL-Endopeptidase Activity

WalK High WalRK

Signalling

\
‘.WalR

™

B) High pL-Endopeptidase Activity

Low WalRK
Signalling

‘ WalR
" "

Ty Lo

5
Lyy

Figure 7: The WalRK Two-Component System Maintains Homeostatic Levels of Endopeptidase Activity

(A) In this scenario, little of the CwlO hydrolase (brown) is present, and the majority of LytE hydrolase (yellow) is being repressed
by IseA (grey), resulting in an overall low level of DL-endopeptidase activity. WalK is then active and can phosphorylate the WalR
response regulator, priming it to promote cwlO and lytE while repressing the iseA repressor. The net effect is an increase in
endopeptidase activity. (B) If the rate of hydrolysis exceeds homeostatic levels, DL-cleavage products (shown in faint teal) can
build up and repress WalK. This leads to the inactivation of WalR, the repression of the DL-endopeptidases, and expression of

IseA, slowing the rate of hydrolysis and restoring homeostasis. Figure adapted from Dobihal et al. [43].

In monoderms, however, this direct coupling approach is
not feasible as hydrolysis and synthesis occur on opposite
sides of the sacculus [8]. Instead, in B. subtilis, actin-like
MreB and MreBH proteins assemble into filaments just be-
low the plasma membrane (Fig. 9B). MreB directly localises
trans-membrane synthases, and MreBH localises LytE en-
dopeptidases before exporting them into the periplasm at
the site of synthesis [52].

4.3 Proteolytic Processing

4.3.1 Hydrolase Degradation

In E. coli, MepS is a cross-link cleaving DD-endopeptidase
that enables cell growth and is subject to protease-mediated
degradation [27, 54]. The Nlpl adaptor protein can tar-
get MepS for proteolysis by forming a complex with the
periplasmic Prc protease, reducing the half-life of MepS
from 45 minutes to just 2; this ensures the degradation of
excess MepS that is not already associated with a synthesis

complex via Nlpl [27, 51].

4.3.2 Zymogen Activation

Some hydrolases, like RipA from Mycobacterium tuber-
culosis, are produced as zymogens. RipA contains an
N-terminal blocking domain that interferes with the DL-
endopeptidase activity of the C-terminal domain, but pro-
teolytic cleavage of the loop linking the N and C-terminal
domains reactivates the hydrolase (Fig. 10) [55]. Similarly,
Atl in S. aureus is produced as a 138kDa proenzyme that’s
then proteolytically processed into two distinct hydrolases,
an amidase and a glucosaminidase [56].

4.4 Substrate Specificity € Modifications
4.4.1 Hydrolysis Resistant Substrates

In monoderms and diderms, MurNAc that’s been O-
acetylated at the C6 hydroxyl protects the glycan chain
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Figure 8: FtsZ Forms the Z-Ring During Cell Division and Recruits Divisome Proteins via its C-Terminal Peptide
(A) The two globular sub-domains of FtsZ are shown in blue and cyan. The orange space-fill represents a bound GDP and the red
space fill highlights an essential residue of the “synergy” loop, a motif also present in a-tubulin that promotes the hydrolysis of GTP
during filament formation. In magenta is the highly conserved C-terminal peptide (15-17 residues) and an intrinsically disordered
peptide linker that can be anything from 43 to 95 amino acids in length [48, 49]. (B) During cell division, FtsZ polymerises
mid-cell to form the Z-ring and its C-terminal peptide recruits a number of divisome proteins — including FtsE of FtsEX. The
periplasmic domain of FtsEX can then localise select hydrolases to the septum. (C) To form the Z-ring, the tubulin-like domain
of FtsZ polymerises into long filaments. Cartoon structures of FtsZ from Erickson, Anderson, and Osawa [48].

from cleavage by lytic transglycosylases, as the C6 hydroxyl
plays an essential attacking role in the lytic transglycosylase
mechanism [57]. Monoderms can also modify their pepti-
doglycan with teichoic acids. These anionic polymers help
maintain a buffered micro-environment within the peptido-
glycan matrix and can sequester positively charged hydro-
lases, protecting the surrounding peptidoglycan from degra-
dation [58, 59].

4.4.2 Hydrolysis Sensitive Substrates

In B. subtilis, the hydrolases SleB and CwlJ act as
germination-specific lytic enzymes (GSLEs) that recognise
the unique 8-lactam MurNAc of the spore cortex (Fig. 6B).
This specificity allows the cortex to be fully degraded while
leaving the inner, primordial layer of peptidoglycan un-
touched [36, 60]. Hydrolases can also discriminate by molec-
ular weight: those containing a LysM domain, such as AtlA

from E. faecalis, preferentially target glycan chains four
sugars or longer (Fig. 11). Consequentially, AtlA readily
digests peptidoglycan in the sacculus but not peptidogly-
can found in smaller, two-sugar fragments [8, 61].

4.5  Protein-Protein Interactions

4.5.1 Hydrolase Inhibitors

IseA inhibits the activity of DL-endopeptidases in B. sub-
tilis, occluding the active sites of LytE (involved in growth)
and LytF (involved in cell-separation) (Fig. 12A). Normally,
this dials back hydrolysis during stationary phase, but the
overexpression of IseA can titrate out LytF and lead to cell
chaining [62, 63]. In bacteria that don’t O-acetylate their
peptidoglycan, like E. coli and P. aeruginosa, another in-
hibitor — Ivy — provides lytic transglycosylase protection by
blocking cellular glycosidase activity [64].
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Figure 9: Peptidoglycan Synthesis and Hydrolysis Is Coupled in Diderms and Monoderms

(A) The thin peptidoglycan wall of diderms like E. coli allows synthesis and hydrolysis machinery to physically interact. Syn-
thase proteins like PBP1A and its activator LpoA straddle the inner and outer membranes, complexing directly with DD-
carboxy/endopeptidases like PBP4/7 [53]. NIpl is an adaptor protein localised to the outer membrane that can bridge these
PBPs to other Db-endopeptidases like MepS and MepM. Figure adapted from Banzhaf et al. [51]. (B) In monoderms like B. sub-
tilis, the cell wall is too thick for hydrolases (which act primarily on the outer layers of peptidoglycan) to interact with synthases
(embedded in the cytoplasmic membrane). Instead, filaments of MreB and MreBH assemble just below the membrane — MreB
directly localises membrane-bound synthases, and MreBH carries LytE the site of synthesis before its secretion into the periplasm.
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Figure 10: RipA Is Proteolytically Activated

The full-length RipA hydrolase in Mycobacterium tuberculo-
sts contains a DL-endopeptidase domain linked to an activity-
blocking N-terminal domain. RipA can be safely stored in the
periplasm until its needed for cell separation, then localised to
the septum where the peptide linking its N and C-terminal
domains is cleaved. With the N-terminal blocking domain re-
moved, RipA regains its DL-endopeptidase activity and can con-
tribute to cell separation. Figure adapted from Chao et al. [55].
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Figure 11: LysM Domains Target the Sacculus

Some hydrolases, like AtlA from FEnterococcus faecalis, contain
LysM domains for binding the cell wall. Mesnage et al. [61] de-
termined via surface plasmon resonance that immobilised LysM
bound peptidoglycan fragments containing intact glycan chains
as seen in the amidase (A) and endopeptidase (B) digests, but
not those containing only GlcNAc-MurNAc dimers (C) or no
glycan at all (D). The selective binding of LysM targets AtlA
specifically to the long glycan chains present in the sacculus.
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Figure 12: Hydrolases Can Be Activated or Inhibited By Protein-Protein Interactions

(A) IseA (shown in red) is an inhibitory protein that occludes the active site of DL-endopeptidases like LytF (shown in cyan) using
a hacksaw-like loop region. The black carets on the left indicate the catalytic triad of LytF and its occlusion by IseA. The right
shows the same structure, but with the charge surface of LytF calculated and IseA’s potentially interacting residues highlighted in
magenta. Figure from Arai et al. [63]. (B) The cell-separation amidases AmiB and AmiC contain o-helices (shown in pink) that
occlude their active site. Figure from Do, Page, and Walker [10]. (C) FtsEX is an ABC transporter that uses ATP hydrolysis to
induce a conformational change in the coiled-coil domain of a bound regulator; this change allows EnvC to activate AmiA /B and
NIpD to activate AmiC. Figure adapted from Do, Page, and Walker [10].

4.5.2 Hydrolase Activators

In E. coli, the cell separation amidases AmiA/B/C are acti-
vated by EnvC and NlpD, proteins that displace an a-helix
occluding the amidases’ active site (Fig. 12B) [65-67]. How-
ever, before EnvC and NlpD can activate anything, they
must themselves be activated by FtsEX (Fig. 12C). FtsEX
is an ABC transporter that doesn’t actually transport any-
thing but instead uses ATP hydrolysis to drive a conforma-
tional change in the coiled-coil domain of a bound regulator,
inducing its activity. FtsEX can also directly activate the
CwlO elongation hydrolase in B. subtilis without the help
of an additional adaptor [68, 69].

5 Conclusion

Peptidoglycan is an incredibly dynamic macromolecule,
constantly remodelled by synthases and hydrolases. This
dynamism allows bacteria to grow and divide but is a del-
icate balance: too little hydrolysis impairs growth and too
much results in lysis. To manage this in a robust way,
bacteria have evolved an array of redundant hydrolases
and multi-level regulatory mechanisms, eliminating single
points of failure and maintaining homeostasis even when

whole pathways are disrupted. The LytE and CwlO elonga-
tion hydrolases of B. subtilis exhibit redundancy, as either
hydrolase is sufficient for growth, and multi-level control,
being regulated at the level of transcription, localisation,
and protein-protein interaction.

Despite the substantial body of literature regarding pep-
tidoglycan hydrolases, the story of their regulation remains
incomplete. Only a handful of hydrolases and regulators
have had their biological functions fully characterised, and
many of the better studied mechanisms just push the ques-
tion upstream. For example, while RipA is known to be
proteolytically activated at the septum of M. tuberculosis,
it’s not clear how that proteolysis itself is regulated [55].

Since the 1940s, antibiotics have saved millions of lives,
but their effectiveness has fallen as pathogenic bacteria de-
velop resistance [70]. Given the ubiquity of peptidoglycan,
the continued study of its synthesis and hydrolysis could
reveal valuable new antibiotic targets — purified hydrolases
have even been applied directly as an antimicrobial drug,
representing a novel class of antibiotic [71]. Understanding
what started as a “paradox”, why bacteria produce poten-
tially lethal hydrolases, may end up being the key to staving
off antibiotic resistance.
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