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Introduction

The goal of this report is to, using measurements from the picture found in Figure 2, calculate the
elastic modulus of the experimental tubing and assess its viability as an aortal analogue. The general
approach will be:

1. Work out an equation that relates elastic modulus and hydrostatic pressure

2. Plot the relationship between tube distention and pressure

3. Using the gradient of this plot, calculate the elastic modulus of the tube

4. Assess the suitability of this setup as an aortal analogue.

To aid in the task of making measurements from the picture, the open-source, freely available
GIMP application was used.1 This enabled precise and repeatable measurements to be made. The
measurements from GIMP were exported for processing in R and were subsequently integrated into
the LaTeX report using Knitr.

∗I’m a Uni student after all ;)
1GIMP can be found here: https://www.gimp.org/
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1 Relating Elastic Modulus to Hydrostatic Pressure

Let’s start by enumerating the information provided in the assignment. Firstly, it is known that the
hydrostatic pressure in a fluid column is given by the following equation:

P = ρgh (1)

ρ is the density of the fluid, g is the acceleration of gravity at Earth’s surface, and h is the height
of the fluid column. Further provided are the equations for hoop stress and strain:

σh = P
r0

t
and εh =

∆r

r0

where r0 is the initial radius of the tube, ∆r is the change in radius under pressure, and t is the
thickness of the tube. Finally, the elastic modulus can be calculated as stress over strain.

E =
σh
εh

Putting all of this together, it is possible to write an equation for the elastic modulus of a thin-walled
tube:

E = P
r0

t
× r0

∆r
=
Pr2

0

t∆r

While the above is the most compact representation, it would be helpful to make the relationship
between P and ∆r more explicit by separating them from the constant terms of the equation. With
this in mind, the final representation of this equation will be:

E =
P

∆r
× r2

0

t
(2)

2 Plotting Tube Distention & Pressure

2.1 Finding Pressures

First things first, before the relationship between tube diameter and pressure can be plotted, the
pressures in each column need to be calculated. In the assignment the column heights are given as
millimetre measurements. To find pressures from these values, they can simply be converted to the SI
unit of metres and be plugged in for h in Equation 1. Of course, in order to get real numbers, some
assumptions need to be made about the other values, namely:

• The acceleration of gravity (g) is to be taken as 9.81 m s−2

• The fluid will be assumed to be water with a density (ρ) of 1000 kg m−3

Since this system is later compared to the cardiovascular system, it would, of course, be ideal
to use blood as the fluid but doing so is often impractical. Seeing as the average density of blood
(1060 kg m−3) is relatively similar to that of water, the 5.66% error in density shouldn’t noticeably
affect the experimental findings.2

2With the added benefit that you can work without the fear of accidentally dousing yourself with a bucket of blood.
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The last thing that needs to be considered before pressures are actually calculated is measurement
error and uncertainty. For the purposes of this calculation, both g and ρ will be considered as intro-
ducing negligible amounts of uncertainly.3 The value that introduces a more meaningful amount of
uncertainly is the height of the fluid in the column (h).

It seems reasonable to assume that this quantity was measured using some sort of ruler (as the
measurements are given in whole millimetres) and therefore it’s possible to measure a value that is a
millimetre or so off. For the purpose of these calculations then, the error in h will be taken as ±1mm.

The last trick here is to convert that absolute uncertainty into standard uncertainty which is rep-
resented as a standard error. Since ±1mm is considered to be a range that (hopefully) all true mea-
surements would fall into, and nearly all (99.7%) of values lie within three standard deviations from
the mean, the standard uncertainty would be 0.333. Since this is a formalised statistical framework
for tracking and propagating error, while all numbers will be given with uncertainty values, the maths
will be done mostly transparently and in the background throughout the report. More detail about
error tracking can be found in Appendix B and the background maths can be seen in the R code of
Appendix C.

Finally, it is possible to calculate the pressures for each column height (as shown in Table 1).

Table 1: Column heights and their corresponding pressures. Note that the column heights in the table
are only present as labels of the image sections (hence the absence of an uncertainty value).

Column Height (mm) Pressure (Pa)

0 0
72 706 ± 3.27
128 1260 ± 3.27
169 1660 ± 3.27
226 2220 ± 3.27
293 2870 ± 3.27
350 3430 ± 3.27
395 3870 ± 3.27

2.2 Measuring Diameters

Now that pressures have been calculated, the diameters need to be measured. This was done in GIMP
using the “Measure” tool and seven measurements were made per section, 15 pixels apart. The raw
values of all of these measurements, their averages, and standard uncertainties, in addition to the source
image, can be found in Appendix A.

Luckily, since it was possible to make repeat measurements of the diameter, it’s trivial to calculate
the uncertainty as the standard error of this data. The last tricky thing is scaling from pixels to
millimetres (and eventually metres). The assignment gives the diameter of the tube (when there is 0
pressure) as 20 mm. Because this measurement is still made in whole millimetres, it will be assumed
that it was measured in a similar way as the column height and it will be assigned a ±1mm absolute
uncertainty making the standard uncertainty — 0.333 mm — the same as before.

Because everything will eventually need to be converted to metres, it would be helpful to define a
conversion factor from pixels to metres. This value will be defined as follows:

Given Initial Diameter (mm)

Measured Initial Diameter (px)
× 1m

1000mm

3To be truly pedantic, this assumes this experiment was performed on earth, outside of a centrifuge, and that the
“water” was composed of two 1H atoms and one 16O atom — as opposed to some exotic deuterium (2H) forms of water...
It’s somewhere around here that things start to get silly.
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Plugging in some numbers, it’s possible to work out a value.

20 ± 0.333���mm

230 ± 0.369px
× 1m

1000���mm
= 8.71 × 10−5 ± 1.46 × 10−6m px−1

The final diameters, converted to millimetres, are visible in Table 2.

Table 2: Column heights and diameters. The column heights, as before, are only present as labels for
the image sections.

Column Height (mm) Diameter (mm)

0 20.0 ± 0.336
72 20.3 ± 0.342
128 20.7 ± 0.348
169 21.0 ± 0.352
226 21.2 ± 0.357
293 21.8 ± 0.366
350 22.1 ± 0.371
395 22.6 ± 0.381

Note that, in the background and in all subsequent plots, the change in diameter is in the units of
metres. Table 2 contains millimetres only because the values are a bit easier on the eyes.

2.3 The Final Plot

Finally, with all numbers gathered, uncertainties tracked, and units converted, it’s time to plot the
relationship between pressure and distension. The final graph can be seen in Figure 1.

●

●

●

●

●

●

●

●

0.020

0.021

0.022

0.023

0 1000 2000 3000 4000

Pressure (Pa)

D
ia

m
et

er
 (

m
)

Pressure Induced Distention

Figure 1: The diameters at various pressures (shown in red) and the line of best fit (shown in blue).
Error bars show the standard uncertainty of the measured diameters. Horizontal error bars were added
to show uncertainty in pressure measurements, but were removed because they were too small to
visualise.
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3 Calculating the Elastic Modulus

The relevant parameter from the plot in the previous section is the gradient. That is the value that
relates the pressure and diameter. More specifically, the gradient above shows:

∆D

∆P
which looks similar to the variable

P

∆r
term from equation 2

Note that, in this context, D is the tube diameter. Rearranging ∆D
∆P

= G to resemble P
∆r

= . . . will
allow the gradient (G) to be plugged into Equation 2 to solve for the elastic modulus.

∆P = P − P0 and P0 = 0 so ∆P = P

∆D

P
= G and ∆D = 2∆r so

2∆r

P
= G

∆r

P
=
G

2

P

∆r
=

2

G

Substituting this into Equation 2 will give the final equation for the elastic modulus:

E =
2

G
× r2

0

t

Regarding the values of the constant terms, r0 is known from earlier calculations to simply be half
of the initial diameter and the tube thickness (t) is given to be 1 mm. Seeing as the tube thickness is
a very small value, it was likely measured with very precise equipment. This, in concert with the fact
that other, larger uncertain terms are present in the equation, means that t will be treated as a certain
value for the purposes of this calculation.

Turning towards the variable term, the gradient comes out to be 6.6 × 10−7 ± 2.7 × 10−8 m Pa−1.
The uncertainty term here comes from the standard error of the gradient as given by the regression.
This value encodes the variation in the gradient if the regression were to be run on a different sample
of data and plays nice with the mathematical framework already established.

Without further ado:

E =
2 Pa

6.6 × 10−7 ± 2.7 × 10−8
��m

× (0.01 ± 1.67 × 10−4)2
��m2

0.001 ��m
= 3.03× 105 ± 1.6× 104Pa

3.1 Confidence In Calculation

This value seems reasonable, despite the somewhat large numbers involved. The fact of the matter is
that Pascals are small units and most elastic moduli are measured in Gigapascals (GPa) or sometimes
Megapascals (MPa). Comparing to some other values4 shows that the calculated modulus is actually
quite small for normal materials, but seems reasonable for an elastic tube. Converting things to MPa,
some comparisons can be made.

E = 0.303 ± 0.016 MPa

The paper by Bernal M et al.5 looks at the elastic moduli of pig carotid arteries as well as the
synthetic analogue urethane. It’s quite possible that the tube used in this experiment was also a

4https://www.engineeringtoolbox.com/young-modulus-d_417.html
5https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3129600/
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urethane tube as the paper gives it an elastic modulus of roughly 0.3 MPa which comes quite close to
the value calculated here.

Since standard uncertainty plays nicely with many statistical tools, it is rather easy to calculate a
confidence interval. Recall that two standard deviations from the mean (or two standard uncertainties
from the value, in this case) encompasses 95% of data. Therefore, forming a 95% confidence interval
requires doubling the uncertainty and adding and subtracting it from the mean value. It is possible
to claim then, with 95% confidence, that the true value of the elastic modulus lies somewhere between
0.271 MPa and 0.335 MPa.

It’s certainly not a perfect estimate, but overall, it seems serviceable. Different materials regularly
differ in elastic modulus by orders of magnitude, so a range of only 0.064 MPa is pretty good.

4 Assessing Suitability as an Aortic Analogue

To assess the viability of this setup as a model for the aorta, the aortic and model distentions over
the same changes in pressure can be compared. For the aorta, it’s said that diameter changes by 10%
between 80mmHg and 120mmHg. Because the question explicitly asks this case to be considered, these
numbers will be left “as is” without any attached uncertainties.

Starting with the obvious, units need to be converted to Pa before they can be plugged into the
model. The conversions are:

80����mmHg × 133 Pa

1����mmHg
= 1.07 × 104 Pa

120����mmHg × 133 Pa

1����mmHg
= 1.6 × 104 Pa

These pressures can easily be plugged into the previous regression in order to predict the distention
of the model. Since it hasn’t been mentioned elsewhere, it’s worth pointing out that the y-intercept of
the regression is 0.0199 ± 6.38 × 10−5 m. Note that the following calculations still take uncertainties
into account, but the ± bits on the left are omitted for clarity.

Regression Gradient × Pressure + Regression Intercept = Predicted Diameter

(6.6 × 10−7 m�
��Pa−1 × 1.07 × 104

��Pa) + 0.0199 m = 0.0269± 0.0011m

(6.6 × 10−7 m���Pa−1 × 1.6 × 104
��Pa) + 0.0199 m = 0.0304± 0.00125m

Unfortunately, there is some ambiguity in which value to calculate next here. There is a 10% change
between the two pressures, but it’s not specified if that is a 10% increase or 10% decrease. To cover all
bases, both percentages will be calculated. Again, the ± bits have been omitted for clarity.

%-Increase =
0.0304 − 0.0269

0.0269
= 13.1 ± 6.2%

%-Decrease =
0.0304 − 0.0269

0.0304
= 11.6 ± 5.48%

Comparing either of these values to the change seen in the aorta is rather promising. While both
of these percentages are a little high, the aortic 10% safely lies inside their large error bounds. It is
important to note that this only shows that the aorta and this model have similar distention-pressure
relations and makes no claim to the similarity of the elastic moduli of the aorta and model tube
material. With that being said, when it comes to fractional distention, this setup is certainly a suitable
model of the aorta.
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Appendix

A Source Image & Measurements

Figure 2: Experimental image from which all measurements were made. It should be noted that this
version of the image has had its contrast slightly boosted and vertical guides (shown as blue, dotted
lines) have been added to show where diameter measurements were taken.

Table 3: Raw diameter measurements in pixels for each fluid level. Seven measurements were taken
per section. The average diameters, as well as their standard uncertainties, can be seen in the last two
rows of the table.

Fluid Level (mm)

0mm 72mm 128mm 169mm 226mm 293mm 350mm 395mm

Meas. 1 231 233 236 240. 243 249 253 257
Meas. 2 230. 235 237 240. 244 249 253 259
Meas. 3 229 234 238 241 244 249 254 259
Meas. 4 229 232 237 239 242 250. 254 260.
Meas. 5 228 233 237 241 244 250. 253 260.
Meas. 6 230. 234 239 242 244 250. 254 261
Meas. 7 230. 234 238 241 245 252 255 260.
Mean 230. 234 237 241 244 250. 254 259
SU 0.369 0.369 0.369 0.369 0.360 0.404 0.286 0.481
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B Standard Uncertainty & Uncertainty Propagation

Whenever measurements are taken, there is bound to be some ambiguity. A combination of limited-
precision tools and human subjectivity results in an uncertainty regarding the true value of any par-
ticular quantity. As it happens, however, the more repeat measurements that are taken, the closer and
closer the average of those measurements gets to the true value.6

In statistics, this phenomenon is called The Law of Large Numbers and the distribution of these
repeat measurements is called a Gaussian or Normal distribution. The width of this distribution can
then be used as a gauge for how much uncertainty is present in the measurements — this is described by
the standard uncertainty. The standard uncertainty is related to the standard deviation (it’s actually
another name for standard error) and is easy to track for repeat measurements like those used in
calibration or for the gradient of a regression, but how does it change when values are multiplied? Or
raised to a power?

To answer this, one turns to the Exact Formula for Propagation of Error :

σ2
x =

(
∂x

∂a

)
σ2
a +

(
∂x

∂b

)
σ2
b + · · · +

(
∂x

∂n

)
σ2
n

The full derivation is beautiful and shows the connection between Calculus and Statistics but isn’t
the topic of this assignment; here, the focus will be on applying this equation.7 Throughout this report,
there have been four classes of calculations that involved uncertainty: addition and subtraction of un-
certain values, exponentiation of uncertain values, multiplication and division of uncertain values, and
scaling by a definite constant. The solution of the propagation equation for each of these calculations
is shown below.

B.1 Addition & Subtraction

x = a+ b− c, σx =
√
σ2
a + σ2

b + σ2
c

B.2 Definite Scaling

x = ka,
σx
x

=
σa
a

B.3 Exponentiation

x = an,
σx
x

= n
(σa
a

)
B.4 Multiplication & Division

x =
a× b

c
,

σx
x

=

√(σa
a

)2

+
(σb
b

)2

+
(σc
c

)2

6On an uncharacteristically serious note, this is a wonderful resource on the topic of measurement uncertainty:
https://www.dit.ie/media/physics/documents/GPG11.pdf

7The full derivation can be found here: https://chem.libretexts.org/Bookshelves/Analytical_Chemistry/

Supplemental_Modules_(Analytical_Chemistry)/Quantifying_Nature/Significant_Digits/Propagation_of_

Error
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C R Code

# Define some constants that will be useful later

t <- 1 / 1000 # m

hg2pa <- 133.322 # Pa / mmHg

g <- 9.80665 # m/s^2

rho <- 1000 # kg/m^3

blood <- 1060 # kg/m^3

# What is the percent error between blood and water densities?

bloodDiff <- (blood - rho) / blood * 100

# Load the diameter measurements

meas <- read.csv("../Diameters.csv")

# Extract the column heights from the header

levels <- unlist(map(colnames(meas), (function (str) strtoi(substring(str,2)))))

# Give them an uncertainty

levelsSU <- unlist(map(levels, function (x) 1/3))

# Give our rows nice names

rownames(meas) <- paste("Meas.",seq(1,7))

# Give our columns nice names

colnames(meas) <- paste0(levels, "mm")

# Convert levels to metres

h <- levels / 1000

# Propagate / scale error

hSU <- h * levelsSU / levels

# Find pressures

p <- rho * g * h

pSU <- p * hSU / h

# Find the average measured diameters for each segment

dias <- colMeans(meas)

# Find the standard uncertainty for each segment

diasSU <- apply(meas,2,sd) / sqrt(nrow(meas))

# The initial tube diameter is given to be 20mm

d <- 20 # mm

# Assume again a millimetre error margin (divided by 3 for standard uncertainty)

dSU <- 1/3 # mm

# Let's find a conversion factor (from px to mm)

mmpx <- d / dias[1]

# Two uncertain values here, so new error formula

mmpxSU <- mmpx * sqrt((dSU/d)^2 + (diasSU[1]/dias[1])^2)

# Scale to metres

px2m <- mmpx / 1000

px2mSU <- px2m * mmpxSU / mmpx

# Finally convert to metres

finDias <- px2m * dias

finDiasSU <- finDias * sqrt((px2mSU/px2m)^2 + (diasSU/dias)^2)

# Plot data

plotData <- data.frame(x = p, xSU = pSU, y = finDias, ySU = finDiasSU)

# Perform a linear regression on the data

lobf <- lm(y ~ x, data = plotData)

# Extract the gradient
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grad <- coef(lobf)["x"]

# Get the standard error / uncertainty of the gradient

gradSU <- summary(lobf)$coefficients[2,2]

# Extract the intercept

int <- coef(lobf)["(Intercept)"]

# Get the standard error / uncertainty of the intercept

intSU <- summary(lobf)$coefficients[1,2]

# Put the regression values in a plotable function

reg <- function(x) grad * x + coef(lobf)["(Intercept)"]

# Find r_0 from d

r0 <- d / 2 / 1000

r0SU <- r0 * dSU / d

# r0^2 is:

r02 <- r0 ^ 2

# New error formula for this one

r02SU <- 2 * r02 * r0SU / r0

# r_0^2 / G

rg <- r02 / grad

# Error, last new formula

rgSU <- rg * sqrt((gradSU / grad)^2 + (r02SU / r02)^2)

# Finally scale by 2 / t

E <- rg * 2 / t

ESU <- E * rgSU / rg

# Having things in MPa would be nice

EM <- E / 1000000

EMSU <- EM * ESU / E

# Comparing to the aorta, let's find mmHg measurements in Pa

lowAo <- 80 * hg2pa

highAo <- 120 * hg2pa

# Predict some distentions from those pressures

pDiaLow <- reg(lowAo)

pDiaHigh <- reg(highAo)

pDiaLowSU <- sqrt((pDiaLow * gradSU / grad)^2 + intSU^2)

pDiaHighSU <- sqrt((pDiaHigh * gradSU / grad)^2 + intSU^2)

# Start with the common parts of the growth and shrink percents

change <- pDiaHigh - pDiaLow

changeSU <- sqrt(pDiaHighSU^2 + pDiaLowSU^2)

# Scale up by 100 to get a percent between 0 and 100

pchange <- 100 * change

pchangeSU <- pchange * changeSU / change

# Percent increase from 80mmHg

grow <- pchange / pDiaLow

growSU <- grow * sqrt((pchangeSU / pchange)^2 + (pDiaLowSU / pDiaLow)^2)

# And percent decrease from 120mmHg

shrink <- pchange / pDiaHigh

shrinkSU <- shrink * sqrt((pchangeSU / pchange)^2 + (pDiaHighSU / pDiaHigh)^2)
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